The shapes of pure cubic fields
نویسنده
چکیده
We determine the shapes of pure cubic fields and show that they fall into two families based on whether the field is wildly or tamely ramified (of Type I or Type II in the sense of Dedekind). We show that the shapes of Type I fields are rectangular and that they are equidistributed, in a regularized sense, when ordered by discriminant, in the one-dimensional space of all rectangular lattices. We do the same for Type II fields, which are however no longer rectangular. We obtain as a corollary of the determination of these shapes that the shape of a pure cubic field is a complete invariant determining the field within the family of all cubic fields.
منابع مشابه
Improving the Speed of Calculating the Regulator of Certain Pure Cubic Fields
3/— Abstract. To calculate R, the regulator of a pure cubic field Q(\Jd), a complete period of Voronoi's continued fraction algorithm over Q(\JD) is usually generated. In this paper it is shown how, in certain pure cubic fields, R can be determined by generating only about one third of this period. These results were used on a computer to find R and 3 — then the class number for all pure cubic ...
متن کاملBinomial squares in pure cubic number fields
Let K = Q(ω), with ω3 = m a positive integer, be a pure cubic number field. We show that the elements α ∈ K× whose squares have the form a − ω for rational numbers a form a group isomorphic to the group of rational points on the elliptic curve Em : y2 = x3 − m. This result will allow us to construct unramified quadratic extensions of pure cubic number fields K.
متن کاملTorsion Groups of Elliptic Curves with Integral j-Invariant over Pure Cubic Fields
We determine all possible torsion groups of elliptic curves E with integral j-invariant over pure cubic number fields K. Except for the groups Z/22, Z/32 and Z/22 @ Z/22, there exist only finitely many curves E and pure cubic fields K such that E over K has a given torsion group E,, (K), and they are all calculated here. The curves E over K with torsion group E roOR( K) r Z/22 0 Z/22 have j-inv...
متن کاملExamples of norm-Euclidean ideal classes
In [11], Lenstra defined the notion of Euclidean ideal class. Using a slight modification of an algorithm described in [12], we give new examples of number fields with norm-Euclidean ideal classes. Extending the results of Cioffari ([5]), we also establish the complete list of pure cubic number fields which admit a norm-Euclidean ideal class.
متن کاملCalculations of Linac Photon Dose Distributions in Homogeneous Phantom Using Spline
Introduction Relative dose computation is a necessary step in radiation treatment planning. Therefore, finding an approach that is both fast and accurate seems to be necessary. The purpose of this work was to investigate the feasibility of natural cubic spline to reconstruct dose maps for linear accelerator radiation treatment fields in comparison with those of the simulation. Materials and Met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016